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Abstract

Several researchers have experimentally shown that substantial improvements can be ob-
tained in difficult pattern recognition problems by combining or integrating the outputs of mul-
tiple classifiers. This chapter provides an analytical framework to quantify the improvements in
classification results due to combining. The results apply to both linear combiners and order
statistics combiners. We first show that to a first order approximation, the error rate obtained

aver atid above the Rayes error rate, i$#HTeCTv pinpottional f6 the variance of the actual Tecision ~
boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces
this variance, and hence reduces the "added” error. If V unbiased classifiers are combined by
simple averaging. the added error rate can be reduced by a factor of .V if the individual errors in
approximating the decision boundaries are uncorrelated. Expressions are then derived for linear
combiners which are biased or correlated. and the effect of output correlations on ensemble per-
formance is quantified. For order statistics based non-linear combiners, we derive expressions
that indicate how much the median, the maximum and in general the :th order statistic can
improve classifier performance. The analysis presented here facilitates the understanding of
the relationships among error rates, classifier boundary distributions, and combining in output
space. Experimental results on several public domain data sets are provided to illustrate the
benefits of combining and to support the analytical results.

1 Introduction

Training a parametric classifier involves the use of a training set of data with known labeling to
estimate or “learn” the parameters of the chosen model. A test set, consisting of patterns not
previously seen by the classifier, is then used to determine the classification performance. This
ability to meaningfully respond to novel patterns. or generalize. is an important aspect of a classifier
system and in essence, the true gauge of performance [38, 77}. Given infinite training data, consistent
classifiers approximate the Bayesian decision boundaries to arbitrary precision, therefore providing
similar generalizations [24]. However, often only a limited portion of the pattern space is available or
observable [16, 22]. Given a finite and noisy dara set. different classifiers typically provide different
generalizations by realizing different decision boundaries [26]. For example, when classification is
performed using a multilayered, feed-forward artificial neural network, different weight initiadizations,
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“Figure 1: Combining Strategy. The solid lines Ieading to f*** represent the decision of a specific
classifier, while the dashed lines lead to f<°™?, the output of the combiner.

o relates the location of the decision boundary to the classifier error.

The rest of this article is organized as follows. Section 2 introduces the overall framework for
estimating error rates and the effects of combining. In Section 3 we analyze linear combiners,
and derive expressions for the error rates for both biased and unbiased classifiers. In Section 4,
we examine order statistics combiners, and analyze the resulting classifier boundaries and error
regions. In Section 3 we study linear combiners that make correlated errors, derive their error
reduction rates, and discuss how to use this information to build better combiners. In Section 6. we
present experimental results based on real world problems, and we conclude with a discussion of the
implications of the work presented in this article.

2 Class Boundary Analysis and Error Regions

Consider a single classifier whose outputs are expected to approximate the corresponding a posteriori
class probabilities if it is reasonably well trained. The decision boundaries obtained by such a
classifier are thus expected to be close to Bayesian decision boundaries. Moreover, these boundaries
will tend to occur in regions where the number of training samples belonging to the two most locally
dominant classes (say, classes i and J) are comparable.

We will focus our analysis on network performance around the decision boundaries. Consider the
boundary between classes § and j for a single-dimensional input (the extension to multi-dimensional
inputs is discussed in {73]). First, let us express the output response of the ith unit of a one-of-L



where pi () denotes the dervative of pet-) Wieth this substitation, Equation 2 becor.s.

Pty F bpliet) e toys = pact) o+ bpllet) 4+ o) Y
Now. since p (L) = p,ir”), we get:
b ('p;(z') — plirt)yy = efry) —e,(ry)

Finally we obtain:

_fdIy) =€) (L) -
= (3)

where:
s = pilz7) - p(x"). (6)

Let the error €;(z5) be broken into a bias and noise term (e;(zs) = 3; + ni(z5)). Note that the
term “bias” and “noise” are only analogies, since the error is due to the classifier as well as the data.
For the time being, the bias is assumed to be zero (i.e. Jx = 0 Vk). The case with nonzero bias will
be discussed at the end of this section. Let ”3.. denote the variances of n(r), which are taken to be
ii.d. variables®. Then. the variance of the zero-mean variable b is given by (using Equation 5):
Ef&, (7)

L
T = 3

Figure 2 shows the a posteriori probabilities obtained by a non-ideal classifier, and the associated
added error region. The lightly shaded area provides the Bayesian error region. The darkly shaded
area is the added error region associated with selecting a decision boundary that is offset by b,
since patterns corresponding to the darkly shaded region are erroneously assigned to class ¢ by the
classifier, although ideally they should be assigned to class J.

The added error region, denoted by .4(b). is given by:

£'+b
Av = [ el - pa) e ®)
Based on this area, the expected added error, E,44. is given by:
20
Eodqa = / A(b) fo(b)db, {9)

where f, is the density function for b. More explicitly, the expected added error is:
oo prt+b
Eaa= [ [ (0() = pi(2) folb) dedb
—ooJz*

One can compute A(b) directly by using the approximation in Equation 3 and solving Equation 8.
The accuracy of this approximation depends on the proximity of the boundary to the ideal boundary.
However, since in general, the boundary density decreases rapidly with increasing distance from the

3Each output of each network does approximate a smooth function. and therefore the noise for two nearby patterns
on the same class (i.e. ne(x) and (£ + Ax)) is correlated. The independence assumption applies to inter-class noise
(1.e. () and n,(r)), not intra-class nuvise.



3 Linear Combining

3.1 Linear Combining of Unbiased Classifiers

Let us now divert our attention to the effects of linearly combining multiple classifiers. In what
follows. the combiner denoted by ave performs an arithmetic average in output space. If .V classifiers
are available, the ith output of the ave combiner provides an approximation to p;(z) given by:

A\
1 ¢ m -
P = 2 M), (16)
m=1
or:
feve(z) = pilz) + 3 + Ale),
where:
;&
M) =5 2w
: m=1
and
1 o
3 - aQm
,,,,, N _ m=1 N — e
If the classifiers are unbiased. 3; = 0. Moreover. if the errors of different classifiers are i.i.d., the
variance of 7j; is given by:
v
2 I ¢ 1, -
T =ﬁm2::1”nr = Nan." (17)

The boundary r®'¢ then has an offset 6%¥¢, where:
f‘GUC(I‘ +bave) —_ f-;lvc(x' +b0U€)’

and:

pove = ﬁi(-rb“"‘) ;n_j(-rb""‘). (18)

The variance of 52*¢, 2..., can be computed in a manner similar to o}. resulting in:

9 2
o, = I + oy,
b 52
which, using Equation 17, leads to:
2 2
2 _ op. t+ Ty,
bdvl _ A\- 32 Al
or:
o2
Ofrue = 2 (19)
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Ecquurtion 24 quantifies the error teduction i the presence of network bias. The improvements are
more modest than those of the previous section. since both the bias and the variance of the noise need
to he reduced. If both the variance and the bias contribute to the error, and their contributions are of
similar magnitude. the actual reduction is given by min(z2. V). If the bias can be kept low (e.g. by
purposefully using a larger network than required). then once again .V becomes the reduction factor.
These results highlight the basic strengths of combining, which not only provides improved error
rates. but is also a method of controlling the bias and variance components of the errot separately.
thus providing an interesting solution to the bias/variance problem 24].

4 Order Statistics

4.1 Introduction

Approaches to pooling classifiers can be separated into two main categories: simple combiners,
e.g.. averaging, and computationally expensive combiners. e.g.. stacking. The simple combining
methods are best suited for problems where the individual classifiers perform the same task, and
have comparable success. However, such combiners are susceptible to outliers and to unevenly
perforining classifiers. Tn the serand ¢ategory, “meta-learners,” ieTeither sets of combining rules, —
or full fledged classifiers acting on the outputs of the individual classifiers, are constructed. This type
of combining is more general. but suffers from all the problems associated with the extra learning
(e.g.. overparameterizing, lengthy training time).

Both these methods are in fact ill-suited for problems where most {but not all) classifiers perform
within a well-specified range. In such cases the simplicity of averaging the classifier outputs is
appealing. but the prospect of one poor classifier corrupting the combiner makes this a risky choice.
Although, weighted averaging of classifier outputs appears to provide some flexibility. obtaining the
optimal weights can be computationally expensive. Furthermore, the weights are generally assigned
on a per classifier, rather than per sample or per class basis. If a classifier is accurate only in certain
areas of the inputs space, this scheme fails to take advantage of the variable accuracy of the classifier
in question. Using a meta learner that would have weights for each classifier on each pattern, would
solve this problem, but at a considerable cost. The robust combiners presented in this section aim
at bridging the gap between simplicity and generality by allowing the flexible selection of classifiers
without the associated cost of training meta classifiers.

4.2 Background

In this section we will briefly discuss some basic concepts and properties of order statistics. Let X
be a random variable with a probability density function fy(-), and cumulative distribution function
Fy(-). Let {.X{..Xs,---, Xv) be a random sample drawn from this distribution. Now, let us arrange

them in non-decreasing order. providing:

XYivshw € <Xy



on the other haad consulers the most “typieal” representation of each clss. For lughly noisy daka,
this combmer s more desieable than either the e or mar combiners stnee the decision s not
compromised as wch by asingle large ervor

The analvsis of the properties of these combiners does not depend on the order statistic chosen.
Therefore we will denote all three by f7(r1 and derive the error regions. The network outpus

i

provided by f’*(r) 15 given by:
fory = ptr) +€7°(x) . {29)
Let us first investigate the zero-bias case {J, = 0Yk). We get ") = n¥(r) Yk. since the

variations in the kth output of the classifiers are solely due to noise. Proceeding as before. the

boundary 4°? is shown to be:

n2*(ry) = ’I;”(-L'b). (30)

S

bO.! —

Since ng's are i.i.d. and ng® is the same order statistic for each class, the moments will be identical
for each class. Moreover, taking the order statistic will shift the mean of both n?* and n?* by the
same amount, leaving the mean of the difference unaffected. Therefore, b°* will have zero mean. and
variance:

2 g2 Y vyt
2 - ~Xq, _ 2
Ohor = —3= = —5 = ;. (31)

where o is & raduction factor that depends on the order statistic and on thé distribution of 4. Tor
most distributions. a can be found in tabulated form [3]. For example, Table 1 provides a values
for all three os combiners. up to 13 classifiers. for a Gaussian distribution [3. 38].

Returning to the error calculation, we have: M?* =0, and M§* = o}... providing:

os _ SM$*  sol.  sao}
add — 2 - B) - 9

= Eadd- (32)

Equation 32 shows that the reduction in the error region is directly related to the reduction in
the variance of the boundary offset b. Since the means and variances of order statistics for a variety
of distributions are widely available in tabular form, the reductions can be readily quantified.

4.4 Combining Biased Classifiers through OS

In this section, we analyze the error regions in the presence of bias. Let us study 4°° in detail when
multiple classifiers are combined using order statistics. First note that the bias and noise cannot be
separated, since in general (a + )% # a° + b°?. We will therefore need to specify the mean and
variance of the result of each operation®. Equation 30 becomes:

pos = Bt m(ze))™ = (3 +1,(2))% (33)
3

5 N . ) .
Now. 3¢ has mean Ji, given by ¥ 3. _ 3 . where m denotes the different classifiers. Since
the noise is zero-mean, 3¢ + nelry) has Hrst moment Ji and variance U;’;h + (73».' where ‘73.. =

Vo T (0 - 307

#Since the exact distribution parameters of %% are not known, we use the sample mean and the sample variance.

Ll
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Analvzing the error reduction in the general case requires knowledge about the bias introduced by

B ) in 1 o -

each classifier. However it is possible to analyze the extreme cases. [f each classifier has the same
. LI 3 . .

bias for example. o7 is reduced to zero and 3 = 3. In this case the error reduction can be expressed

a3

‘ 3 2 2
Efia(3) = 5ty +37).
where only the error contribution due to the variance of b is reduced. In this case it is important to
reduce classifier bias before combining (e.g. by using an overparametrized model). If on the other
hand. the biases produce a zero mean variable. i.e. they cancel each other out, we obtain 3 =0. In

this case, the added error becomes:

aad(d) = a Eqqq(3) + (03 - 3%

2

2

and the error reduction will be significant as long as o3 < J°.

5 Correlated Classifier Combining

5.1 Introdyction S

The discussion so far focused on finding the types of combiners that improve performance. Yet,
it is important to note that if the classifiers to be combined repeatedly provide the same (either
erroneous or correct) classification decisions, there is little to be gained from combining, regardless
of the chosen scheme. Therefore, the selection and training of the classifiers that will be combined
is as critical an issue as the selection of the combining method. Indeed. classifier/data selection is
directly tied to the amount of correlation among the various classifiers, which in turn affects the
amount of error reduction that can be achieved.

The tie between error correlation and classifier performance was directly or indirectly observed by
many researchers. For regression problems, Perrone and Cooper show that their combining results
are weakened if the networks are not independent [49]. Ali and Pazzani discuss the relationship
between error correlations and error reductions in the context of decision trees {2]. Meir discusses the
effect of independence on combiner performance [41], and Jacobs reports that N’ < iV independent
classifiers are worth as much as V dependent classifiers [34]. The influence of the amount of training
on ensemble performance is studied in [64]. For classification problems, the effect of the correlation
among the classifier errors on combiner performance was quantified by the authors [70].

5.2 Combining Unbiased Correlated Classifiers

In this section we derive the explicit relationship between the correlation among classifier errors and
the error reduction due to combining. Let us focus on the linear combination of unbiased classifiers.

Without the independence assumption, the variance of 7, is given by:

N N

2 L (oom
Ty = \—Z Z cov(n, (r).r}f(r))

=1 m=1

13



This expression ouly considers the error that ocour between classes ¢ and y. {n order to extend this
expression to include all the boundaries, we introduce an overall correlation term o, Then. the added
error is computed in terms of ¢ The correlation among classifiers s calculated using the tollowing

exXpression:
L
0= ZP‘ 9, (42)
=1

where P, is the prior probability of class :. The correlation contribution of each class to the overall
correlation, is proportional to the prior probabhility of that class.
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Figure 3: Error reduction (%ﬂ-) for different classifier error correlations.

Let us now return to the error region analysis. With this formulation the first and second moments

of b2U¢ yield: M2 = 0, and M$"® = ol... The derivation is identical to that of Section 3.1 and

the only change is in the relation between o} and o7.... We then get:

s Mve 3 o
o= = la.
T 3% N
1+46(V-1
. = Euu (—(V——)) . (43)

The effect of the correlation between the errors of each classifier is readily apparent from Equa-
tion 43. If the errors are independent, then the second part of the reduction term vanishes and the
combined error is reduced by .V. If on the other hand. the error of each classifier has correlation
1, then the error of the combiner is equal to the initial errors and there is no improvement due to
combining. Figure 3 shows how the variance reduction iy affected by &V and 9 (using Equation 43).

15



Equation $9 shows the creor eeduction for corvelated. based clissiers. As long as the blases of
individual classitiers are reduesd by o larger amount than the correlared vartanees. the reduction
will he simmilar to those in Section 3.2 However, if the blases are not redueed, the improvement gains
will not be as significant. These results are conceptually identieal to rhose obtained in Section 3,

but vary in how the bias reduction =z relates to V. [n etfect, the requirements on reducing : are
1

lower than they were previously, since in the presence of bias. the error reduction is less than .
The practical implication of this observation is that. even in the presence of bias, the correlation
dependent variance reduction term (given in Equation 43) will often be the limiting factor. and

-
.

dictate the error reductions.

5.4 Discussion

In this section we established the importance of the correlation among the errors of individual clas-
sifiers in a combiner system. One can exploit this relationship explicitly by reducing the correlation
among classifiers that will be combined. Several methods have been proposed for this purpose and
many researchers are actively exploring this area [60].

Cross-validation, a statistical method aimed at estimating the “true' error [21, 63, 73], can
also be used to control the amount of correlation among classifiers. By only training individual
classifiers on overlapping subsets of the data, the correlation can be reduced. The various boosting
algorithms exploit the relationship between corrlation and error rate by training subsequent classifiers
on training patterns that have been “selected” by earlier classifiers [13. 13. 19. 59] thus reducing the
correlation among them. Krogh and Vedelsky discuss how cross-validation can be used to improve

ensemble perforuance (6], Bootstrapping, or generating ditferent training sets for each classifier by

resampling the original set [17, 18, 35, 75|, provides another method for correlation reduction [47].
Breiman also addresses this issue, and discusses methods aimed at reducing the correlation among
estimators [9, 10]. Twomey and Smith discuss combining and resampling in the context of a 1-d
regression problem [74]. The use of principal component regression to handle multi-collinearity while
combining outputs of multiple regressors. was suggested in [42]. Another approach to reducing the
correlation of classifiers can be found in input decimation. or in purposefully withholding some parts
of each pattern from a given classifier {70]. Modifying the training of individual classifiers in order
to obtain less correlated classifiers was also explored [36], and the selection of individual classifier
through a genetic algorithm is suggested in [46].

In theory. reducing the correlation among classifiers that are combined increases the ensemble
classification rates. In practice however, since each classifier uses a subset of the training data,
individual classifier performance can deteriorate, thus offsetting any potential gains at the ensemble
level [70]. It is therefore crucial to reduce the correlations without increasing the individual classifiers’

error rates.

6 Experimental Combining Results

In order to provide in depth analysis and to demonstrate the result on public domain data sets, we
have divided this section into two parts. First we will provide detailed experimental results on one
difficult data set, outlining all the relevant design steps/parameters. Then we will summarize results
on several public domain data sets taken from the UCT depository/Probenl benchmarks [30].



Table 3: Combining Results tor FSL

- Clawstfierts) Ave f Mend M " Min
1 | N || Error l\T o | Error j o Error . 7 Ecror I T
3 7.19 [ .29 725 1021 7.38 | 037 719 1037
MLP 3 T3 027 T30 020 732 |04l 720 | 037
7 TAL L0230 727 (0200 727 1037 735 | 030
| 3 6.13 | 0301 642 1029 622 | 034 630 | 040
RBF 3 6.05 | 020 623 | 0.13 | 6.12 {0344 6.06 | 0.39
T 597 10224 625 | 020 6.03 | 035 392 | 031
3 6.11 | 034 (] 602 | 033}l 643 1043 ] 639 | 0.29
: BOTH | 5 6.11 | 0.31 376 | 0.29 6.39 | 0.40 6839 | 0.24
g 7 || 6.08 | 032 567 | 027 || 668 | 0.41 || 6.90 | 0.26
Table 4: Combining Results for FS2.
Classifier(s) Ave Med - Max Min
[ N || Error I c Error | o Error [ g Error [ o

3 932 1035 947 | 047 || 964 | 047 || 9.39 | 0.34
MLP 3 920 {030 | 9.22 10304 9.73 | 0.44 ) 9.27 | 0.30
7 9.07 | 036 9.11 | 029 | 980 | 048} 925 | 0.36
3 11035 ({045 1049 | 0.42 )] 10.539 | 0.57 |} 10.74 | 0.34
_| RBF 5 || 10.43 | 0.30 || 10.51 | 0.34 || 10.55 | 0.40 || 10.65 | 0.37
T 1044 ] 032 |f 1046 | 0.31 || 10.38 | 0.43 | 10.66 | 0.39
3 846 [ 057 | 9.20 | 0.49 || 865 | 047 || 9.96 | 0.33
BOTH | 5 817 | 041} 897 | 0.54 | 871 | 036 9.50 } 0.45
T 814 {028 8385 | 045 879 :040 ] 940 |0.39

o different classifiers trained with a single feature set (fifth and sixth rows):

e single classifier trained on two different feature sets (seventh and eighth rows).

There is a striking similarity between these correlation results and the improvements obtained
through combining. When different runs of a single classifier are combined using only one feature
set, the combining improvements are very modest. These are also the cases where the classifier -
correlation coefficients are the highest. Mixing different classifiers reduces the correlation, and in
most cases, improves the combining results. The most drastic improvements are obtained when
two qualitatively different feature sets are used, which are also the cases with the lowest classifier

correlations.

6.2 Probenl Benchmarks

In this section, examples from the Probenl benchmark set? are used to study the benefits of com-
bining [50]. Table T shows the test set error rate for both the MLP and the RBF classifiers on six

different data sets taken from the Probenl benchmarks!®.

?Amilable from: ftp://ftp. ira.uka.de,/pub/papers, techreports,/1994,/1994-21 ps.Z.
W These Probenl results correspond to the “pivot” and “no-shortcut” architectures (A and B respectively). reported
in [30]. The large error in the Probenl no-shorteut architecture for the SOYBEANL problem is not explained.
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[able 3: Combining Results for CANCERL
" Classifier(s) Ave Mol Max Min I
[ N || Ecvor | o Error ( 7 || Error [ 7 | Error [ 7

| 3 060 J013] 063 0171 066 [021] 066 [021]
CMLP 50 060 {013 033 [ 000 | 063 | 017 | 063 | 0.17
| Tl 060 | 0130 05338 {000 060 | 013 060 | 0.13
30 129 Jo48 ) 112 [033 ] 190 [052] 095 | 042
- RBF 50| 126 [ 047 || L12 | 047 131 o.ssai 0.98 | 0.37
T 132 |04l 113 | 0431 1.81 | 0331 039 | 0.34
: 30 036 [039] 063 [ 013 | 1.03 [ 053 095 | 0.42 .
"BOTH | 5 || 0.72 [0.25 | 0.72 {023 | 133 0431 033 | 029
| 7| 0.86 | 0.39 | 058 | 0.00 149 [ 0.39§ 0.33 | 0.34

Table 9: Combining Results for CARDI.
Classifier(s) Ave Med Max Min
[ N || Error I Iod Error ’ o Error ] o Error l o4

3 1337 | 0.45 || 13.61 | 0.56 || 13.43 | 0.44 || 1340 | 047
5

13.23 | 0.36 || 13.40 | 0.39 || 13.37 | 0.45 || 13.31 | 0.40
1320 | 0.26 | 13.29 | 033 || 13.26 | 0.35 | 13.20 | 0.32
] 3 ] 1340 [ 0.70 || 1338 | 0.76 | 14.01 | 0.66 | 13.08 | 1.05
| RBF | 5 || 13.11 | 0.60 || 13.29. | 0.67 || 13.95 | 0.66 || 12.88 | 0.93

MLP

T 13.02 1033 § 1299 | 0338 || 13.v5 | 0.F6°| 12.82 | 0.67
3 || 13.75 ;1 0.69 || 13.69 | 0.70 |} 13.49 | 0.62 || 13.66 | 0.70
BOTH | 5 || 13.78 | 0.55 || 13.66 | 0.67 || 13.66 | 0.65 || 13.75 | 0.64
7T || 13.84 | 0.51 {| 13.32 | 0.58 || 13.66 | 0.60 || 13.72 | 0.70

The CARD1 data set consists of credit approval decisions [31. 32]. 31 inputs are used to determine
whether or not to approve the credit card application of a customer. There are 690 examples in
this set, and 345 are used for training. The MLP has one hidden layer with 20 units. and the RBF
network has 20 kernels.

The DIABETESI data set is based on personal data of the Pima Indians obtained from the
National Institute of Diabetes and Digestive and Kidney Diseases [63]. The binary output determines
whether or not the subjects show signs of diabetes according to the World Health Organization.
The input consists of 8 attributes, and there are 768 examples in this set, half of which are used for
training. MLPs with one hidden layer with 10 units, and RBF networks with 10 kernels are selected
for this data set.

The GENEL is based on intron/exon boundary detection, or the detection of splice junctions
in DNA sequences (45, 66]. 120 inputs are used to determine whether a DNA section is a donor,
an acceptor or neither. There are 3175 examples, of which 1388 are used for training. The MLP
architecture consists of a single hidden layer network with 20 hidden units. The RBF network has
10 kernels.

The GLASS!1 data set is based on the chemical analysis of glass splinters. The 9 inputs are used
to classify 6 different types of glass. There are 214 examples in this set. and 107 of them are used
for training. MLPs with a single hidden layer of 13 units, and RBF networks with 20 kernels are



Cible 120 Combing Resudes for GLASSL

ECliwssiter <) Ave ! Mot Mix : Min |
L N || Error I |l Error [ 7 Ecror | 7 Ecror l 7|
PTos207 Tooo T 207 ool 3207 1000 3207 | 0.00
MLP ¢ 5 3207 1 0.00 1 3207 {000 3207 1 000 32.07 | 0.00
TO32.07 1 0.00 [ 3207 1 0.00 { 32.07 | 0.00 || 32.07 | 0.00
3 2031 1 223 13076 ) 2,74 ] 3028 § 2.02 1 2043 | 2.39
RBF 30902025 ) L34 30191 1.69 | 30.35 | 2.004} 28.30 | 2.46
ToH29.06 | 151 )] 3060 | 1.38 | 31.89 | 1.78 || 27.55 | 1.83
. 30013066 | 252 2006 | 202 33.37 | L.74 )| 2091 | 2.25
BOTH ' 5 |} 3236 | 1.82 | 2330 | 1.46 §| 33.68 | 1.82 |1 29.72 | 1.78
Tl 3245 1 096 ¢ 2703 1 1.75 || 3415 ¢ 168 §) 2091 | 1.61 |
Table 13: Combining Results for SOYBEAN]1.
Classifier(s) Ave Med Max Min
l N || Error l g Error [ c Error l o Error o
3 T06 {000 709 | 013} 7.06 |0.00} 7.85 | 1.42
MLP 5 706 [ 000 706 | 000 7.06 | 0.00] 838 | 163
7 7.06 1000 706 | 0001} 706 |0.00| 8.38 | 168
L3 T4 04T T6> | 042 TR [ 047 | 77T | 044
RBF 5 ! 762 1023 763 {030 777 | 030 | 7.65 | 042
Tl 763 J023f T2 [ 033] 768 {029 759 | 045
3 718 [ 023 T.12 [ 017 || 7.56 | 0.28 ) 7.85 | 1.27
BOTH | 3 718 1023 ) 712 | 00T )| .50 [ 0.25 ] 806 | 1.22
T 718 1024 713 [ 0234 7.50 ] 0.25 ) 8.09 | 1.05

in most cases. If the combined bias is not lowered. the combiner will not outperform the better
classifier. Second. as discussed in section 5.2. the correlation plays a major role in the final reduction
factor. There are no guarantees that using different types of classifiers will reduce the correlation
factors. Therefore. the combining of different types of classifiers. especially when their respective
performances are significantly different (the error rate for the RBF network on the CANCERI data
set is over twice the error rate for MLPs) has to be treated with caution.

Determining which combiner (e.g. ave or med), or which classifier selection (e.g. multiple MLPs
or MLPs and RBFs) will perform best in a given situation is not generally an easy task. However,
some information can be extracted from the experimental results. The linear combiner, for example,
appears more compatible with the MLP classifiers than with the RBF networks. When combining
two types of network, the med combiner often performs better than other combiners. One reason for
this is that the outputs that will be combined come from different sources, and selecting the largest
or smallest value can favor one type of network over another. These results emphasize the need for
closely coupling the problem at hand with a classifier/combiner. There does not seem to be a single
type of network or combiner that can be labeled “best” under all circumstances.



overtranung. but not undertraining (except in cases where the nndertraming is wory nuld). This
cortoborates well witle the theoretical framework which shows combining to be more effective at
vartanee reduction than bias reduetion.

The classification rates obtained by the order statistics combiners in section 6 are in general,
comparable to those obtained by averaging. The advantage of OS approaches should He more evident
In situations where there is substantial variability in the performance of individual classifiers. and the
thus robust properties of OS combining can be brought to bear upon. Such variability in individual
performance may be due to, for example. the classifiers being geographigally distributed and working
only on locally available data of highly varying quality. Current work by the authors indicate that
this is indeed the case. but the issue needs to be examined in greater detail.

One final note that needs to be considered is the behavior of combiners for a large number of
classifiers (.V). Clearly. the errors cannot be arbitrarily reduced by increasing .V indefinitely. This
observation however, does not contradict the results presented in this analysis. For large .V, the
assumption that the errors were i.i.d. breaks down, reducing the improvements due to each extra
classifier. The number of classifiers that yield the best results depends on a number of factors,
including the number of feature sets extracted from the data, their dimensionality. and the selection

of the network architectures.
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